
Supporting Agile Teams with a Test Analytics
Platform: a Case Study

Olivier Liechti
University of Applied Sciences and Arts Western Switzerland

Yverdon-les-Bains, Switzerland
olivier.liechti@heig-vd.ch

Jacques Pasquier
Fribourg Univesity

Fribourg, Switzerland
jacques.pasquier@unifr.ch

Rodney Reis
Avalia Systems

Yverdon-les-Bains, Switzerland
rodney@avalia.systems

Abstract—Continuous improvement, feedback mechanisms
and automated testing are cornerstones of agile methods. We
introduce the concept of test analytics, which brings these three
practices together. We illustrate the concept with an industrial
case study and describe the experiments run by a team who had
set a goal for itself to get better at testing. Beyond technical
aspects, we explain how these experiments have changed the
mindset and the behaviour of the team members. We then
present an open source test analytics platform, later developed
to share the positive learnings with the community. We describe
the platform features and architecture and explain how it can
be easily put to use. Before the conclusions, we explain how test
analytics fits in the broader context of software analytics and
present our ideas for future work.

Keywords-agile development; automated testing; gamification;
feedback channels;

I. INTRODUCTION

Among key agile practices, three are at core of the case
study presented in this paper. The first practice is continuous
self-improvement: the repeated evaluation and adjustment of
individual and collective practices in the pursuit of excellence
and betterment of results. This is why agile teams conduct
retrospective meetings, where they openly discuss strengths
and weaknesses and decide how to experiment with new meth-
ods. The second practice is the implementation of feedback
cycles to make progress and issues quickly visible to the
team. Through these feedback cycles, people become aware
of different aspects of software development such as code
quality, process efficiency and team morale. The third practice
is automated testing, which is essential to “bake quality in the
product” while sustaining the pace of delivery and avoiding
bottlenecks in the process.

These three practices relate to each other in different ways.
One way to look at it is to consider that automated testing
generates data, giving frequent feedback about the product
quality. The team then uses this feedback to improve the code.
Another way to look at it is to put the testing activity in
the center. In this case, the team is made aware of events
such as the creation and the execution of tests. People get
feedback about the structure of the test suite (i.e. what types
of tests cover what parts of the system) and its evolution
over time. This helps the team continuously assess its testing
practices and take corrective actions when needed. Ideally, the
impact of automated testing on user satisfaction, velocity and

team morale should be measured and made clearly visible. To
capture these ideas, we propose the concept of test analytics.
We define it as analytics on test-related data in order to give
actionable insights about product quality and agile practices,
with the goal to support a continuous improvement process.

Our understanding of test analytics has emerged from our
experience at a startup company over several years. In the
remaining sections of the paper, we start with a presentation
of the case study. We explain how the implementation of test
analytics has helped the team address different pain points,
with a lasting impact. We then present an open source test
analytics platform, which has later been developed to make
our positive learnings available to other teams. We describe
how the platform makes it easy to collect test-related data, to
analyze it and finally to give feedback to the team. Before the
conclusions, we explain how test analytics fits in the broader
context of software analytics. We present some ideas for future
work in this area.

II. CASE STUDY

When we started to experiment with the idea of test analyt-
ics, our goal was not to do scientific research. It was to help
an agile development team get better and more consistent at
testing, with the expectation of a broader impact: reduce the
time needed to release new products, reduce the number of
customer issues, and increase employee pride and satisfaction.
In the following paragraphs, we first set the context by
introducing the company and the team. We then describe the
pain points felt by the team and analyze their causes. We then
explain our attempts to trigger both perspective and behaviour
changes within the company. Finally, we present our results
and the key lessons learned through the process.

A. Context
In the Swiss higher education system, universities of applied

sciences have a strong practical focus. A lot of the research
projects are done in collaboration with commercial companies,
with the goal to bring innovative products and services to the
market. In early 2008, the first author started a collaboration
with an early stage start-up, which had set to build a global
mobile payment platform. The two founders had a business
background. They had a prototype and a first customer, but
no technical team. Initially, the research institute received



the mandate to transform the prototype into an industrial-
grade platform. Over time, the first author was asked to take
increasing responsibilities and eventually became CTO for
the company. He grew the engineering team, many members
of which were former students and research engineers from
the institute. The team was young and eager to learn. The
team culture was imprinted with agile values: autonomy, trust,
responsibility, and continuous learning. The work environment
was typical of a startup company. Everything was changing
rapidly and often, including business opportunities, product
priorities, and customer requirements. There was a sense of
urgency and deadlines were often agressive. Over a few years,
the team grew to reach about 25 engineers distributed across
Switzerland, Romania and Singapore.

At a certain stage, the team started to feel the pain of the
technical and organizational debt that had been accumulated
over time. The most severe consequence was the increasing
time required to release new versions of the software. There
were far too many back and forths between the software
and QA engineers, and deployments were stressful. The team
was working on two-week iterations, but the definition of
done was not crisp nor strictly adhered to. This negatively
impacted team satisfaction and confidence. On the bright side,
the environment was healthy from an agile perspective, in
the sense that it was possible to openly put the issues on
the table and there was a willingness to improve things. The
self-diagnosis by the team made it clear that both engineering
practices and collaboration practices had to be considered to
improve the situation. In other words, the team had to pay
back technical and organizational debt.

B. Technical debt and the chore of writing tests

While the software architecture and the code were not
perfect, they were not the real problem. The foundations were
good and the code had been refactored on a regular basis.
The main problem was the lack of a proper test harness.
There were some unit tests, there were some integration tests
and some very interesting tools had even been developed in-
house to test mobile components. However, there was no
discipline around testing. Test-driven and behaviour-driven
development were not part of the standard workflow. Most
engineers agreed with the theory of extreme programming,
but in practice viewed development and automated testing as
two distinct activities. Writing automated tests was not seen
as something intellectually rewarding, but rather as a chore. In
this context, it was easy for the team to use time pressure as a
reason to postpone these activities and to rather dive into the
development of new features. This attitude is not specific to
this particular team and is something we have observed over
and over in other contexts.

To address this problem, it was necessary to trigger a be-
haviour change and then to measure the impact of a disciplined
testing process in tangible ways. We believed that this would
be key to increase personal satisfaction and to intrinsically
motivate the team in a sustainable way.

C. Organizational debt and the whole-team approach
Agile methods put an emphasis on collaboration, autonomy

and collective responsibility. When the development team is
entrusted with some objectives, it should be able to decide
how to organize itself to achieve them. Everybody in the
team should share this responsibility and proactively contribute
to the team effort. In the early days, the notion of team
was very developer-centric. Typically, a development team
would use agile practices to deliver deployable software on
a regular basis. This software would be handed over to a
QA team with the responsibility to fully test and validate
it. Finally, the validated software would be handed over to
an IT Operations team with the responsibility to deploy and
operate it. The software, QA, and IT Ops engineers would
often belong do different organizations. Today, the flaws of this
type of setup are widely recognized and many organizations
are moving towards the whole-team approach. The idea is that
the team responsible for a product or a set of features should
be cross-functional. There should be no handover between
organizations and the same small team should assume the
responsibility for the entire product lifecycle. This idea is
central to DevOps [1] and agile testing [2].

However, the organizational structure at the company had
followed the traditional path: there were distinct development,
QA, and IT Ops teams. The company was small, but we
still had handovers between teams. The negative consequences
that we experienced were fully consistent with the theory.
As mentioned before, most developers were not naturally
inclined to put effort in automated testing. It was too easy
for them to assume that anything related to testing was the
responsibility of the QA staff. Since the QA staff was doing
mostly manual testing, they were unable to keep up with the
pace of development. Their choice was to either test a sub-
set of the functionalities developed or to postpone the release
dates.

To address this problem, it was necessary to shake up
the organization and to move towards a true whole-team
setup. The boundaries between the roles of software and QA
engineers had to blur. Developers needed to accept automated
testing as their primary responsibility and truly apply extreme
programming practices. The QA engineers would then have
time to do more exploratory testing and bring more value
to the product. To help the transition, we believed that the
introduction of behaviour-driven development was promising.

D. Driving behaviour change
With a shared agreement on the problems and their causes

within the team, it was then time to experiment with new prac-
tices and to see whether we could trigger and sustain positive
behaviour changes. Interestingly enough, one of the products
developed by the company had a comparable objective. As
part of a mobile commerce platform, this product intended to
drive the consumer behaviour (e.g. increase the number of in-
app purchases). This product was an example of persuasive
technology [3] and we had become familiar with the Fogg
Behaviour Model (FBM) [4]. The FBM claims that to perform



target behaviour

low ability high ability

low
motivation

high
motivation

1. core motivators:
pleasure/pain

hope/fear
social acceptance / rejection

2. simplicity factors:
time

money
physical effort
brain cycles

social deviance
non-routine

3. triggers
spark

facilitator
signal

Fig. 1. The Fogg Behaviour Model [4]

a target behaviour, a person must i) be sufficiently motivated,
ii) have the ability to perform it, and iii) be triggered to
perform it. A visual representation of the FBM is shown in
Figure 1, with its three factors: motivators, simplicity factors
and triggers. They all need to be considered in order to drive
a person to adopt a target behaviour and continue performing
it. Triggers tell people to perform a behaviour now. Fogg
describes three types of triggers. Sparks are used when people
lack motivation and facilitators are used when they lack
abilities. Signals are used when they have the motivation and
ability to perform the behaviour simply acting as a reminder.

E. Experiments

To address the technical and organizational problems de-
scribed before, we experimented with various ideas and it-
eratively refined them. Eventually, the most useful practices
became habits for the team.

We started with a focus on the collaborative practices,
with the goal to move towards the whole-team approach. A
key element of Behaviour-Driven Development (BDD) [5] is
the notion of ubiquitous language, borrowed from domain-
driven design [6]. The ubiquitous language helps the different
stakeholders (developers, business analysts, testers, etc.) to
communicate about the product. It can also be used to write
executable specifications, which capture the externally visible
behaviour of the product. Our hypothesis was that introducing
BDD in our workflow would serve two purposes. Firstly, it
would help us increase the collaboration between people with
different roles in the company. We decided that executable
specifications would need to be written, or at least reviewed,
by four people: a product owner, a QA specialist, an IT ops
engineer and a developer. Secondly, we also decided that the
executable specifications would serve as the primary artefact
for accepting a feature as done. At the end of the development
workflow, the multi-disciplinary feature team would present
and execute the specification to introduce the new functionality
to the other teams. To implement the transition to BDD, we
organized a series of workshops to train the team, started with
small experiments on simple features and appointed people to
become experts and coaches. These small experiments have
allowed us to evaluate and select the tools, and to create a

target behaviour
apply BDD/TDD and 

be rigorous at 
testing

low ability high ability

low
motivation

high
motivation 1. core motivators:

pleasure to become better engineers
hope to increase product quality

social acceptance from the team

2. simplicity factors:
time: aggregation of results

brain cycles: examples
non-routine: ceremonies, reviews

3. triggers
spark: workshop, gamification
facilitator: appointed coach

signal: reporting, information radiators

Fig. 2. The Fogg Behaviour Model applied to agile testing

collection of examples, which made it easier for the rest of
the team to get started.

In terms of engineering practices, our goal was to drive
the software engineers to be more thorough with automated
testing. The overall company focus on BDD helped, because
it provided a context and overarching goal. However, we also
wanted to improve other areas of testing, such as unit testing
and non-functional testing. We also had some ideas to use
gamification to add some fun to the process. We have started
by designing a simple system that collected the results pro-
duced by test runners, such as JUnit, in a central location. This
has allowed us to detect the addition of new tests to the test
suite. For every test, we knew the category (unit, integration,
etc.), the author, the tested component and the underlying
language. On the fun side, we were then be able to award
points and badges to good contributors and generate testing
leaderboards. On the serious side, we were able to generate
a single report that aggregated test results across components,
layers and languages. The report not only presented a snapshot
of the product quality, but also its evolution. We started the
implementation of this system in the context of the annual
company hackathon, which had been initiated a couple of
years before to promote creativity and team building. The first
version was rapidly put together and later on, some effort was
put to extend it iteratively.

F. Key learnings

The experiments had a significant and lasting impact on
the team. The team was eager to improve, which obviously
made things a lot easier. The adoption of BDD by the whole
team was fast and effective in changing the mindsets. One
thing that the team had to fine tune was the granularity of
the executable specifications. Initially, every feature was fully
specified by a team of four people. It was a good thing because
it got the ball rolling and helped us get alignment across roles.
After a while, the team felt that for some of the features, the
overhead was too big (people had the feeling that they spent
too much time in meetings). The process was adjusted, so that
only one or two people would write the specification, which
would then be reviewed by the others. A successful review of
the specification would then make it ready for development.



The gamification features played their role in creating some
initial excitement. As developers acquired testing skills and
started to see a tangible impact on quality, they had enough
intrinsic motivation to sustain the effort. At this stage, the
user interface that presented the aggregated test results and
the evolution of the test suite became the preferred feedback
channel for the team. Monitoring the characteristics of the test
suite (by category, component, language) allowed the team
to monitor progress and make adjustments. Getting a regular
feedback across layers and up to the externally visible be-
haviour tremendously increased the team’s confidence, pride,
and satisfaction. Several years after these experiments, the
engineers have moved on with their careers and are working in
other companies. Many of them have reported that they have
brought the acquired testing culture with them and continue to
use some of the practices. Some have faced resistance and have
expressed frustration not being allowed to invest the proper
time in automated testing.

In Figure 2, we use the FBM as a framework to summarize
our experiments. Our goal was to drive two target behaviours
by the team: i) the adoption of BDD by all stakeholders and
ii) the rigorous maintenance of an automated test suite. We
leveraged different factors to increase motivation: the pleasure
to master new skills and to become better professionals, the
hope to have an impact on quality and time to release and the
appreciation of the other team members. We relied on other
factors to reduce friction: the ability to easily get aggregated
test results saved time, a comprehensive collection of exam-
ples reduced cognitive overhead and test-related ceremonies
introduced new routines. Finally, we used different triggers to
set the team in motion. The workshops allowed the team to
reflect and understand the broader impact that was expected.
The gamification features gave the initial incentive to write
tests. The appointment of testing coaches helped the whole
team acquire the required skills. Finally, notification of test
results via different channels was a continuous reminder of
the testing activity and of the progress made by the team.

III. AN OPEN SOURCE TEST ANALYTICS PLATFORM

We believe that the positive results that we observed are
not specific to that particular team. This has led us to start
an open source project, with the goal to make some of the
learnings available to other teams. Today, this platform is
publicly available [7] and can be setup in a variety of technical
environments. In the following paragraphs, we first describe
the architecture and the execution model of the platform. We
then present the characteristics of its core components and
describe three types of feedback channels that it enables.

A. Architecture and execution model
The architecture of the test analytics platform is shown

in Figure 3. At the lowest layer, probes capture test results
produced by different tools (unit test frameworks, BDD frame-
works, performance testing tools, etc.). Probes can be installed
wherever tests are run, i.e. both on developers machines and
build servers. In the middle layer, the server exposes interfaces

Data processing & storage

Collector
(REST API, redis queue)

Analytics dashboard
(metrics, visualizations)

Gamification UI
(leaderboards, trends)

Information radiators
(WoT, notifications)

Probe
Probe Probe ProbeProbe Probe

Fig. 3. Architecture of the test analytics platform

to collect the data sent by the probes. It processes the data
and keeps the entire history in persistent storage. In the upper
layer, different feedback channels make the information and
the derived insights available to the team.

The execution model is shown in Figure 4. It is important
to understand the structure of the payloads generated by the
probes, as well as the capabilities of the platform. The model
is based on continuous delivery [8] concepts:

• Pipelines. A pipeline defines a sequence of stages re-
quired to build and validate the software. Most develop-
ment teams define several pipelines. Developers may use
a simple pipeline on their machine, with one phase to
compile the code and one phase to run unit and integra-
tion tests. The continuous integration server may use a
longer pipeline with phases dedicated to automated User
Acceptance Testing (UAT) and performance testing. The
same pipeline can be executed in different environments
(on a developer’s machine, on a CI server, etc.).

• Stages. Within a pipeline, a stage defines a logical group
of operations (steps). In a typical pipeline, there are a few
stages such as the commit stage, the integration testing
stage, the UAT stage. It is up to the development team to
define the granularity and the meaning of stages.

• Steps. A step is an operation that is executed during a
stage of pipeline. Compiling source files and running unit
tests are two examples of steps.

• Nodes. A node is a computer on which a step is exe-
cuted. For instance, it can be a developer machine, the
integration server or one of the build servers in a build
cluster. A node has certain properties: operating system,
available resources, etc.

• Pipeline executions. The execution of a pipeline starts
whenever the software has to be built and validated.
Sometimes, developers trigger the execution of a newe (in
the IDE, in the CI UI, on the command line). Sometimes,
the execution is triggered as a side effect (e.g. after a
commit).

• Test execution and payload generation. During a pipeline
execution, one or more steps may cause a probe to send
a test payload to the server. For example, in the commit



Nodes

Stage
"commit"

Pileline
"full-build"

Step
"#S1"

Step
"#S2"

Stage
"integration"

Step
"#S4"

Step
"#S5"

Stage
"acceptance"

Step
"#S6"

Step
"#S7"

Step
"#S8"

Configuration

Resources
#S2

#BS

#S5

#BS

#S7

#BS

#S8

#BS

Nodes
#S2

#D1

#S5

#D1

#S7

#D1

#S8

#D1

Nodes
#S2

#MS

#S5

#SL1

#S7

#SL2

#S8

#SL3

Step 2 
executed on 

the build 
server

Step 5 
executed on 
a slave build 

server

Step 5 
executed on 
one of the 
developers 

machine

Execution

Fig. 4. Pipelines, nodes and test executions

stage of the developer pipeline, a step might execute a
suite of unit tests via maven, which would cause the
JUnit probe to send a payload. This would happen on a
single node. Another example would be, in the integration
stage of the daily build pipeline, a step that executes
a suite of API tests and another step that executes a
suite of integration tests. Two probes would generate two
payloads and send them to the server. This may happen
on the same node or on different nodes. A test payload is
therefore associated with a pipeline execution, a stage, a
step and a node.

B. Probes

The test analytics platform is not a substitute to test frame-
works and tools. The role of the platform is to collect the
results produced by the existing test infrastructure and to trans-
form this raw data in actionable information. The integration
between the platform and the third-party frameworks is done
via probes. Simply stated, a probe is a framework-specific
agent that is able to collect the results of every test run and
to forward it to the platform in a normalized format.

At the time of writing, the probes for the following test
frameworks are already available: JUnit, Arquillian, Jasmine,
Mocha, Karma, PHPUnit, Python nose2, pytest, Cucumber,
RSpec. These probes are implemented on top of shared
libraries for the following languages: Java, JavaScript, Python
and Ruby. The librairies make it easy to implement new probes
for other test frameworks. Essentially, it is sufficient to be
notified when new test results are available (usually via a
listener API provided by the test framework) and to pass them
to the language-specific library. The library then generates
and uploads a JSON payload. The structure of this payload
is shown in Listings 1 and 2.

C. Feedback channels

Different types of channels can be combined to present
information and insights to the team. The first one is the
analytics dashboard, shown in Figures 5 and 6. This is a
pull channel, in the sense that users must take the conscious

1 {

2 "version": 1,

3 "project": {},

4 "scm": {},

5 "pipeline": {},

6 "node": {},

7 "runtime": {},

8 "testFramework": {},

9 "results": []

10 }

Listing 1. Structure of the JSON payload sent by probes

1 {

2 "key": "8srng9a",

3 "name": "Login: user should be able to log in",

4 "passed": false,

5 "duration": 1204.35,

6 "tags": [ "security" ],

7 "tickets": [ "JIRA-190", "JIRA-8320" ],

8 "log": "2016-03-02T14:49:34.781Z [DEBUG] - Opened http://localhost:3000\n2016

-03-02T14:49:34.781Z [DEBUG] - Clicked on #login",

9 "failures": [

10 { "type": "Failed Assertion", "message": "Expected loggedIn to be true, got

false", "stackTrace": "foo\nbar" },

11 { "type": "Error", "stackTrace": "foo\nbar\nbaz" }

12 ],

13 "file": "src/test/resources/com/example/users/LoginFlow.java",

14 "line": 129,

15 "hierarchy": [ "com", "example", "users", "LoginFlow" ],

16 "runtime": {

17 "package": "com.example.users",

18 "class": "Login",

19 "method": "userShouldBeAbleToLogIn"

20 },

21 "memory": 12638380

22 }

Listing 2. Example of a test result in the payload

decision to visit the dashboard and to analyze the situation.
Here are some of the features supported by the interface:

• in the upper-left corner of Figure 5, the recent activity
shows which tests have been run, in which environments
and what have been the results. This shows what is
the current status of the build. It also indicates what
individual developers are currently working on.

• In the lower-left corner of Figure 5, the widget shows
the evolution of the test suite over time. By default,
the accumulated number of all tests is shown, but it is
possible to filter the test suite by project or developer.
A flat line indicates that no new test has been added for
some time, which suggests an increasing technical debt.

• In the upper right corner of Figure 5, the number of test
runs is shown in a line graph. Users can also use different
filters to analyze the activity in more details.

• In the upper part of Figure 6, users get an overview of a
specific test run. The visual indicators show the relative
and absolute number of failing tests.

• For every test, users can dig into the details and inspect
the metadata. As shown in the lower part of Figure 6, they
even have access to the execution trace (this information
is sent by the probes together with the test results).

The second feedback channel is the user interface that
embodies the gamification features. Based on the lessons we
learned during the case study, we initially invested less time on
gamification than on analytics. Today, the stable release of the
test platform provides basic mechanisms for team members to
evaluate their contributions compared to their peers. However,
the metrics are not presented with game-specific terminology
(e.g. badges, reputation, etc.). We have plans to change that



Fig. 5. Overview of test-related activity in the dashboard

Fig. 6. Drill-down into the details of a test execution



in the future. We have already developed a generic gamifi-
cation platform [9] as a new loosely coupled component in
the architecture. The multi-tenant platform allows third-party
applications to send streams of events that capture user activity.
Rules can be defined with a Domain Specific Language (DSL)
to react to user events and to trigger game mechanisms
(rewards, progression, etc.). An API is provided to retrieve
the state of players and display it. To drive the specification
of the gamification platform, we used the gamification of
agile processes as the first application domain. Every activity
performed by a team member (writing code, writing tests,
reviewing code, breaking a build, etc.) is an event that can
go through the rule-based system. It is also worth noting that
when we developed the gamification platform, we used the test
analytics platform to monitor its quality. The lead developer,
who did not have a lot of experience with automated testing
also became “test addicted”.

The third feedback channel serves a very different purpose
and is a push channel. In this case, the goal is to notify
users about the ongoing activity without requiring the focus of
their attention. This is best done with user interfaces that are
physically embedded in the environment and that use relatively
abstract representations. The goal of these representations, is
to allow users to continuously and effortlessly maintain aware-
ness about what is happening. They are also an example of
signal triggers in the FBM, by reminding people to perform the
target behaviour. Similarly to the gamification features, we are
working on this topic from a broader perspective and consider
other types developer activities. We have developed a series of
prototypes to explore how the activity of a development team
could be represented with connected objects [10]. The impact
of awareness on motivation is discussed in [11].

IV. FUTURE WORK AND CONCLUSIONS

Our definition for test analytics is based on the broader
definition for software analytics [12]. Software data can be
extracted from all sorts of repositories: version management
systems, issue trackers, mailing lists, etc. Mining software
repositories sees growing interest from the research commu-
nity. For instance, there have been attempts to model the
evolution of software systems and ecosystems, to predict
defects and to understand the effectiveness of development
processes by applying data mining, machine learning and
visualization techniques. Some of the work has specifically
looked at automated testing, for example to study the co-
evolution of application and test code [13], as well as the
traceability between code units and automated tests [14].

In that spirit, our goal is now to analyze testing practices
across a large number of teams and projects. The resulting
data will allow agile teams to compare their practices against
their peers. Beyond simple metrics, we aim to measure the
impact of automated testing on defects, frequency of releases,
developer satisfaction and other dimensions. This would be of
tremendous value, as it would provide motivation and guidance
to the teams, as well as a way to measure their progress. As
an initial step towards this ambitious goal, we have created

a flexible and scalable data collection platform. We will now
use it in concert with the test analytics platform. Our first goal
is, for a given project, to retrieve the list of all past releases,
to run the corresponding test suite and to collect the results.
Our second goal is to perform this task on a large number of
curated open source projects. The other metrics, such as the
number of issues, used to measure the impact still need to be
defined.

It is hard to dispute the fact that automated testing sig-
nificantly improves software quality. In many environments,
however, there is room for improvement. In our experience,
there are simple and effective ways to make the impact and the
progress visible to the team with a huge boot on motivation.
A test analytics platform offers a way to get started.

ACKNOWLEDGMENT

The authors would like to thank the entire team, whose
efforts have been reported in the case study. The learnings are
the results of a collective and participative effort. The authors
would also like to thank the contributors to the open source
platforms described in the paper, and in particular the research
engineers and students at the University of Applied Sciences
and Arts Western Switzerland and Fribourg University.

REFERENCES

[1] M. Walls, Building a DevOps culture. O’Reilly Media, Inc., 2013.
[2] L. Crispin and J. Gregory, Agile testing: A practical guide for testers

and agile teams. Pearson Education, 2009.
[3] B. J. Fogg, “Persuasive technology: Using computers to change what

we think and do,” Ubiquity, vol. 2002, no. December, Dec. 2002.
[Online]. Available: http://doi.acm.org/10.1145/764008.763957

[4] B. Fogg, “A behavior model for persuasive design,” in Proceedings
of the 4th International Conference on Persuasive Technology, ser.
Persuasive ’09. New York, NY, USA: ACM, 2009, pp. 40:1–40:7.
[Online]. Available: http://doi.acm.org/10.1145/1541948.1541999

[5] C. Solis and X. Wang, “A study of the characteristics of behaviour driven
development,” in 2011 37th EUROMICRO Conference on Software
Engineering and Advanced Applications. IEEE, 2011, pp. 383–387.

[6] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

[7] (2017, January). [Online]. Available: http://probedock.io
[8] J. Humble and D. Farley, Continuous delivery: reliable software releases

through build, test, and deployment automation. Pearson Education,
2010.

[9] Y. Kammoun, “Game dock: design and implementation of a gamifi-
cation platform,” University of Applied Sciences Western Switzerland,
Bachelor thesis, 2016.

[10] O. Liechti, J. Pasquier, L. Prévost, and P. Gremaud, “The wot as an
awareness booster in agile development workspaces,” in International
Conference on Web Engineering. Springer, 2016, pp. 598–602.

[11] O. Liechti, J. Pasquier, and R. Reis, “Beyond dashboards: on the
many facets of metrics and feedback in agile organizations,” in 10th
International Workshop on Cooperative and Human Aspects of Software
Engineering (submitted), 2017.

[12] T. Menzies and T. Zimmermann, “Software analytics: so what?” IEEE
Software, vol. 30, no. 4, pp. 31–37, 2013.

[13] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen,
“Mining software repositories to study co-evolution of production &
test code,” in 2008 1st International Conference on Software Testing,
Verification, and Validation. IEEE, 2008, pp. 220–229.

[14] B. Van Rompaey and S. Demeyer, “Establishing traceability links
between unit test cases and units under test,” in Software Maintenance
and Reengineering, 2009. CSMR’09. 13th European Conference on.
IEEE, 2009, pp. 209–218.

View publication statsView publication stats

https://www.researchgate.net/publication/314841349

